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a b s t r a c t 

Weak illumination or low light image enhancement as pre-processing is needed in many computer vi- 

sion tasks. Existing methods show limitations when they are used to enhance weakly illuminated images, 

especially for the images captured under diverse illumination circumstances. In this letter, we propose 

a trainable Convolutional Neural Network (CNN) for weakly illuminated image enhancement, namely 

LightenNet, which takes a weakly illuminated image as input and outputs its illumination map that is 

subsequently used to obtain the enhanced image based on Retinex model. The proposed method pro- 

duces visually pleasing results without over or under-enhanced regions. Qualitative and quantitative com- 

parisons are conducted to evaluate the performance of the proposed method. The experimental results 

demonstrate that the proposed method achieves superior performance than existing methods. Addition- 

ally, we propose a new weakly illuminated image synthesis approach, which can be use as a guide for 

weakly illuminated image enhancement networks training and full-reference image quality assessment. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

High quality images and videos are needed in both computer

ision applications ( e.g. , object detection and tracking) and con-

umer electronics ( e.g. , hand-hold devices). However, images and

ideos captured under weak illumination conditions often suf-

er from noticeable degradation of visibility, brightness, and con-

rast. Accordingly, weak illumination image enhancement as pre-

rocessing is of significance and also desired. 

Despite numerous methods [4–7,9,11,19–21,24,28] have been de-

eloped for degraded image and video enhancement, there are still

ome issues that remain to be resolved for weak illumination im-

ge enhancement. Therefore, we propose a new method to en-

ance images captured under poorly-lit circumstances. First, we

uild our method on the Retinex model [18] which can be used

o enhance image via estimating its illumination map. Thus, the

ey to achieve enhanced image is to estimate an accurate illumina-

ion map. Then, we formulate a compact and efficient CNN, namely

ightenNet, which takes a weakly illuminated image as input and

utputs its illumination map that is subsequently used to obtain

he enhanced image based on Retinex model. Both qualitatively

nd quantitatively experimental results show that our method
∗ Corresponding author. 

E-mail address: jcguo@tju.edu.cn (J. Guo). 
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enerates accurate illumination maps and achieves more natural-

ooking results and better details than the state-of-the-art meth-

ds. Additionally, our method generalizes well to the images cap-

ured under varying illumination conditions. Here, varying illumi-

ation conditions represent non-uniform illumination, back light-

ng, extremely weak illumination intensity, well-lit, and so forth.

he main contributions of this letter are summarized as follows: 

• We propose a trainable CNN for weak illumination image en-

hancement. Different from several existing CNN-based image

enhancement methods which directly estimate the enhanced

or restored image, our LightenNet learns to predict the map-

ping relations between weakly illuminated image and the cor-

responding illumination map. Thus, LightenNet is easy to be

trained. It just takes 1 h to optimize our LightenNet. 
• Based on Retinex model, we propose a new method for weakly

illuminated image synthesis, which can be use as a guide for

subsequent network training and full-reference image quality

assessment. 
• Compared to existing weak illumination image enhancement

methods, our CNN-based method achieves the state-of-the-art

performance on both synthetic and real weakly illuminated im-

ages. 

The remainder of the letter is organized as follows.

ection 2 presents a brief overview of the related work.

ection 3 first reviews Retinex model, and then introduces

https://doi.org/10.1016/j.patrec.2018.01.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2018.01.010&domain=pdf
mailto:jcguo@tju.edu.cn
https://doi.org/10.1016/j.patrec.2018.01.010
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the proposed LightenNet model. Section 4 shows experimental

results. Section 5 concludes this letter. 

2. Related work 

Over the past few decades, many methods have been proposed

to enhance degraded images. However, fewer methods can gener-

ate ideal results when they are applied to weakly illuminated im-

ages. For example, histogram-based methods [23] usually increase

the dynamic range of the gray values, which leads to suboptimum

enhancement performance for image details. For another example,

physical model-based methods [19,28] usually produce unnatural

and unrealistic results since some priors or assumptions do not al-

ways hold for varying illumination conditions. 

In contrast to traditional image enhancement methods, there

are fewer methods that enhance weakly illuminated images. Sev-

eral existing enhancement methods [4,19,28] are based on the ob-

servation that the inverted low-light images intuitively look like

haze images. Such a method first inverts an input low-light image,

and then employs an image dehazing algorithm on the inverted

image, finally achieves the enhanced image by inverting the de-

hazed image. Dehazing-like methods can enhance the visual qual-

ity of low-light images to some extent, however, these methods

lack of cogent physical explanation and tend to produce unrealis-

tic results. Recently, Fotiadou et al. [5] proposed a novel method

to enhance low-light images based on the framework of Sparse

Representations. Fotiadou et al. used two dictionaries ( i.e ., night

dictionary and day dictionary ) to transform the Sparse Represen-

tation of low-light image patches to the corresponding enhanced

image patches. The enhanced results significantly relied on the ac-

curacy of the learned dictionaries. Fu et al. [7] employed fusion-

based method for weakly illuminated image enhancement, which

fused luminance-improved and contrast-enhanced versions of in-

put by two designed weights. Besides, multi-scale fusion scheme

was applied to reduce the amplified artifacts. The enhanced results

are characteristic with improved brightness, contrast, and details.

However, like other fusion-based image enhancement methods,

such a method tends to produce over-enhanced, over-saturated,

and unrealistic results due to ignoring the physical properties of

weak illumination image degradation. Lore et al. [20] proposed a

deep learning-based method to adaptively enhance and denoise

images captured under low-light environments, namely LLNet. Lore

et al. directly employed an existing deep neural network architec-

ture ( i.e. , stack sparse denoising autoencoder) to build the relations

between the low-light images and the corresponding enhanced

and denoised images. The experimental results demonstrated that

deep learning-based method is suitable for low light image en-

hancement. Guo et al. [11] proposed a simple low-light image en-

hancement method, namely LIME. This method first estimated the

illumination of each pixel in the low-light image, then refined the

initial illumination map by a structure prior, finally the enhanced

image was achieved based on Retinex model using the estimated

illumination map. Besides, in order to reduce the amplified noise,

an existing image denoising algorithm was used as post-processing

in the LIME method. 

3. The proposed method 

In this section, we begin by describing Retinex model where

we built our method on, and then present the layer design of the

proposed LightenNet and introduce how to enhance weakly illumi-

nated images by the predicted illumination map, last introduce the

implementation details of our LightenNet. 
.1. Retinex model 

Following Retinex model proposed by Land [18] which describes

he lightness and color perception of human vision, we explain the

ormation of the weakly illuminated image as follows 

(x ) = R (x ) · L (x ) . (1)

here x denotes a pixel, I ( x ) is the observed image, R ( x ) is

he reflectance of the image, and L ( x ) is the illumination. The

ot “ · ” means pixel-wise multiplication. The physical meaning of

q. (1) can be simply described as that the observed image ( i.e .,

eakly illuminated image) can be decomposed into the product

f the reflectance of image R ( x ) ( i.e ., desired illuminated image)

nd the illumination map L ( x ) ( i.e ., dark veiling which degrades

nput image). Thus, weak illumination image enhancement means

emoving weak illumination from input image. In this letter, our

oal is to achieve the reflectance R ( x ) from the observed image I ( x )

y predicting its illumination map L ( x ). 

.2. LightenNet 

The proposed LightenNet is inspired by the success of deep

earning in low-level vision tasks [1–3] . The purpose of Lighten-

et is to learn a mapping, which takes a weakly illuminated im-

ge as input and outputs its illumination map that is subsequently

sed to obtain the enhanced image based on Retinex model. The

rchitecture of LightenNet is shown in Fig. 1 . In the LightenNet ar-

hitecture, input is the weakly illuminated image and the output is

he corresponding illumination map. Similar with Dong et al. [3] ,

ightenNet contains four convolutional layers with specific tasks.

bserving the feature maps in Fig. 1 , different convolutional layers

ave different effects on final illumination map. For example, the

rst two layers focus on the high light regions and the third layer

ocuses on low light regions while the last layer is to reconstruct

he illumination map. The specific operation form of the four con-

olutional layers is described as follows. 

Patch extraction and representation: To learn the relations be-

ween weakly illuminated image and its illumination map, we first

xtract overlapping image patches from weakly illuminated image

nd represents each image patch using a high-dimensional vector

y n 1 filters, and can be expressed as 

 1 (P ) = max (0 , W 1 ∗ P + B 1 ) , (2)

here P is an input image patch with size n × n, W 1 and B 1 are the

eights and biases of filters. The size of W 1 is f 1 × f 1 × n 1 , where

 1 is the spatial support of a filter, and n 1 is the number of filters.

 1 is an n 1 -dimensional vector, whose each element is associated

ith a filter. “∗” represents the convolution operation. max (0, x ) is

 Rectified Linear Unit (ReLU) [17] , which is applied to accelerate

raining convergence and improve performance. 

Feature enhancement: Inspired by the feature enhancement

ayer used in compression artifact reduction [3] , we employ a fea-

ure enhancement layer to map the “noisy” feature to a relatively

cleaner” feature space since the weakly illuminated images usu-

lly suffer from the effects of noise. It can be expressed as 

 2 (P ) = max (0 , W 2 ∗ F 1 (P ) + B 2 ) , (3)

here W 2 contains n 2 filters of size f 2 × f 2 × n 1 , and B 2 is an n 2 -

imensional vector. 

Non-linear mapping: The next step is to map each high-

imensional vector onto another high-dimensional vector, namely

ransforming F 2 ( P ) into F 3 ( P ): 

 3 (P ) = max (0 , W 3 ∗ F 2 (P ) + B 3 ) , (4)

here W 3 contains n 3 filters of size f 3 × f 3 × n 2 , and B 3 is an n 3 -

imensional vector. 
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Fig. 1. The architecture of LightenNet. LightenNet consists of 4 convolution layers, i.e ., patch extraction and representation, feature enhancement, non-linear mapping, and 

reconstruction. 
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Reconstruction: Lastly, a convolutional layer is designed to ag-

regate the patch-wise representations to generate the learned il-

umination map. F 3 ( P ) is transformed into F 4 ( P ), and can be ex-

ressed as 

 4 (P ) = W 4 ∗ F 3 (P ) + B 4 . (5)

here W 4 contains n 4 filters of size f 4 × f 4 × n 3 , and B 4 is an n 4 -

imensional vector. 

These unknown network parameters � = 

 W 1 , W 2 , W 3 , W 4 , B 1 , B 2 , B 3 , B 4 } are achieved by minimizing Mean

quared Error (MSE) loss function by supervised learning manner.

SE loss function is expressed as 

 (�) = 

1 

N 

N ∑ 

i =1 

‖ F (P i ;�) − il l u i ‖ 

2 . (6)

here N is the number of image patch in a training batch, P i rep-

esents a weakly illuminated image patch, illu i is a patch of illumi-

ation map that corresponds to P i , and F is the learned mapping

unction. 

.3. Weakly illuminated image enhancement 

Following previous method [11] , we adjust the estimated illu-

ination map by Gamma correction in order to thoroughly unveil

ark regions in the results, which can be expressed as 

 (x ) ′ = L (x ) γ , (7)

here L ( x ) is the estimated illumination map and L ( x ) ′ is the

amma corrected illumination map. Here, γ = 1 . 7 is a heuristic

alue. We assume that the local region with size n × n of input

mage has the same illumination intensity when we optimize the

apping. Therefore, after Gamma correction, we need to refine the

llumination map by guided image filtering [12] in order to remove

he effects of blocking. In guided image filtering, the red channel

f input image is taken as guided image and the size of filtering

indow is 16 × 16. Last, according to Eq. (1) , the enhanced image

 ( x ) can be obtained by 

 (x ) = 

I(x ) 

L r (x ) 
. (8)

here x denotes a pixel, I ( x ) is the weakly illuminated image,

nd L r ( x ) is the refined illumination map. As shown in Fig. 2 , our

ightenNet accurately estimates the illumination maps which rep-

esent the illumination intensity. With the accurate illumination

aps, our method generates natural and realistic results where

ark regions are enhanced while light regions ( e.g ., light source)

re preserved. 
.4. LightenNet implementation 

Our model is implemented in the Caffe package [14] and the

ightenNet parameter settings are summarized in Table 1 . In the

tage of training LightenNet, the filter weights of each layer are

nitialized randomly from a Gaussian distribution, and the biases

re set to 0. The initial learning rate is 0.05, and the learning

ate decreases by 0.5 every 10 0,0 0 0 iterations. The momentum

arameter is set to 0.9. A batch-mode learning method with a

atch size of 128 is applied. The network training is done on a

C with a Intel(R) Xeon(R) CPU E5-2660 v3 @2.60 GHz and an

vidia Titan X GPU within 1 h. Note that this optimization is real

ast. 

One challenge of training LightenNet is that deep learning sys-

ems require amount of training data, typically paired with la-

els or corresponding ground truth. Unfortunately, there is no

nough labelled data available. Different from pervious methods

hich use the HDR image as labelled data, we synthesize train-

ng data based on the Retinex model in Eq. (1) . Instead of taking

DR images as labels, our synthesis approach is physical forma-

ion model available, which results in more reasonable and reliable

nhancement performance. In addition, to employ synthetic train-

ng data, we follow the assumptions that image content is inde-

endent of illumination map and illumination map in image patch

s locally constant ( i.e ., local region has the same illumination

ntensity). 

Specifically, we collected 600 clear illuminated images with a

ariety of content from Internet for the synthesis of sample pairs

 i.e ., pairs of weakly illuminated image and its illumination map).

ere, clear illuminated images mean that images are with well

llumination and contrast but without noise and blurring. please

ee the examples in Fig. 3 . These 600 clear illuminated images

ave different sizes and are with PNG or BMP format. Based on

q. (1) Retinex model, given a clear illuminated image R ( x ) and a

andom illumination value L , a weakly illuminated image I ( x ) can

e synthesized as I(x ) = R (x ) · L . Here, R ( x ), L , and I ( x ) are normal-

zed. Based on these synthesized images, we obtain training im-

ge patches by overlapping cropping. The overlapping pixels are

0. At last, a total of 2,052,864 training image patches with size

 × n = 16 × 16 are collected. Note that we have assumed that local

egion ( i.e ., 16 × 16) has the same illumination intensity and the as-

umption is reasonable in the real-world when the image patch is

mall enough. Fig. 3 presents several examples of the clear illumi-

ated images and the corresponding synthetic weakly illuminated

mages. 
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Fig. 2. Our step-by-step outputs. (a) Weakly illuminated images. (b) Coarse illumination maps estimated by LightenNet. (c) Gamma corrected illumination maps. (d) Refined 

illumination maps by guided image filtering. (e) Our enhanced results. In the (b)–(d), different color represents different illumination intensity (from blue to red represents 

from 0 to 1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Parameter settings of LightenNet. 

Formulation Type Input Size Num Filter Padding 

Patch Extraction and Representation Conv 3 × 16 × 16 n 1 = 32 f 1 × f 1 = 6 × 6 0 

ReLU 32 × 11 × 11 32 – 0 

Feature Enhancement Conv 32 × 11 × 11 n 2 = 16 f 2 × f 2 = 7 × 7 0 

ReLU 16 × 5 × 5 16 – 0 

Non-linear mapping Conv 16 × 5 × 5 n 3 = 8 f 3 × f 3 = 1 × 1 0 

ReLU 8 × 5 × 5 8 – 0 

Reconstruction ConV 8 × 5 × 5 n 4 = 1 f 4 × f 4 = 5 × 5 0 

Fig. 3. Examples of the clear illuminated images and the corresponding synthetic 

weakly illuminated images. From top to bottom are the clear illuminated images 

and the corresponding synthetic weakly illuminated images. From left to right, the 

illumination values L are 0.5159, 0.0088, 0.2328, and 0.4475. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Average MSE values for different network param- 

eter settings and architectures. 

Layers Filters Sizes MSE 

4 16-8-4-1 6-7-1-5 0.04225 

4 32-16-8-1 6-7-1-5 0.00816 

4 64-32-16-1 6-7-1-5 0.00623 

4 128-64-32-1 6-7-1-5 0.00565 

4 32-16-8-1 3-9-1-6 0.00865 

4 32-16-8-1 5-7-1-6 0.04225 

4 32-16-8-1 6-7-1-5 0.00816 

4 32-16-8-1 7-5-1-6 0.00927 

4 32-16-8-1 6-7-1-5 0.00816 

4 32-16-8-1 6-7-3-5 0.00771 

4 32-16-8-1 6-7-5-5 0.00750 

4 32-16-8-1 6-7-7-5 0.00717 

4 32-16-8-1 6-7-1-5 0.00816 

8 32-16-8-1 6-7-1-5 0.00897 

12 32-16-8-1 6-7-1-5 0.00923 

16 32-16-8-1 6-7-1-5 0.01243 

e  
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t  
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4. Experiment results 

In this section, we first investigate the relations between the

performance of LightenNet and network parameter settings. Next,

we present the qualitative and quantitative comparisons on differ-

ent types of weakly illuminated images. At last, we present several

failure cases of our method and discuss the reasons. 

4.1. Model and performance trade-offs 

Based on the basic network parameter settings presented in

Table 1 , we will investigate the effects of different parameter set-

tings and architectures. The MSE values for different settings are

summarized in Table 2 . The MSE value for our basic network pa-

rameter settings is marked in bold. The basic filter number settings

of LightengNet are n 1 = 32 , n 2 = 16 , n 3 = 8 , and n 4 = 1 , and could

be denoted as 32-16-8-1. Following this denotation, we denote an-

other 3 filter number settings as 128-6 4-32-1, 6 4-32-16-1, and 16-

8-4-1 to show the effects of filter number. Then, we present the
ffects of filter size. The basic filter size settings of our network

re f 1 = 6 , f 2 = 7 , f 3 = 1 , and f 2 = 5 , and could be denoted as 6-

-1-5. Inspired by Sparse Representation-based method [5] , we fix

he filter size of third layer to be 1 ( i.e ., f 3 = 1 ), and change filter

ize of other layers. We denote another 3 filter size settings as 7-5-

-6, 5-7-1-6, and 3-9-1-6. Besides, we also remove the 1 × 1 filter

ize constraint to investigate the effects of sparse-representation-

ased constraint. We denote another 3 filter size settings as 6-7-3-

, 6-7-5-5, and 6-7-7-5. At last, we investigate the effects of layer

umber. The default layer number is 4 ( i.e ., patch extraction and

epresentation layer, feature enhancement layer, non-linear map-

ing layer, and reconstruction layer). We repeat original architec-
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Fig. 4. Qualitative comparisons on synthetic images. (a) Synthetic weakly illuminated images. (b) Results of HE [10] . (c) Results of MSR [15] . (d) Results of AWVM [8] . (e) 

Results of LIME [11] . (f) Results of our method. (g) Ground truth. 
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i  
ure several times in order to add more layers. 8, 12, and 16 repre-

ent repeating 2 times, 3 times, and 4 times original architecture. 

As shown in Table 2 , with filter number increasing, the supe-

ior MSE performance could be achieved. However, the improve-

ent is limited. As we all known, the limited improvement is at

he cost of training time and processing time. Thus, we select a

iddle network filter number as our basic filter number settings

ased on the trade off between performance and complexity. In

ddition, our basic filter size settings obtain best result among MSE

omparisons. That may be because our filter size settings could

rasp richer structural information, which in turn leads to bet-

er performance. It also demonstrates that a reasonable filter size

ettings could achieve better performance. For the 1 × 1 filter size

onstraint, we found that breaking this constraint could introduce

he limited improvement at the cost of training time and process-

ng time. Thus, we retain 1 × 1 constraint in our network since this

onstraint is effective and efficient for our network design. At last,

ith more layers, we do not obtain better MSE performance. The

eason might be (1) the effects of gradient diffusion; (2) simple

riginal architecture repeat results in unreasonable network archi-

ecture. In the future work, we will investigate more reasonable

eep network architectures such as He et al. [13] and Kim et al.

16] for weakly illuminated image enhancement. 

.2. Qualitative comparisons 

In this part, we qualitatively compare our method with classi-

al HE (Histogram Equalization) method [10] and MSR (Multi-scale

etinex) method [15] , and the state-of-the-art methods ( i.e. , LIME

11] and AWVM [8] ) on synthesized and real weakly illuminated

mages. 

Firstly, we carry out qualitative comparisons on synthesized

eakly illuminated images. These images are synthesized based

n Retinex model in Eq. (1) . Specifically, the synthesis approach
as been illustrated in Section 3.4 . Qualitative comparisons on syn-

hetic images are presented in Fig. 4 . 

In Fig. 4 , compared with synthetic weakly illuminated im-

ges, all of methods successfully improve the luminance and con-

rast. Compared to ground truth, the results of our method are

ost close to the ground truth of the weakly illuminated im-

ges. HE method increases the global contrast, which leads to

ver or under-enhanced regions. MSR method introduces gray veil-

ng on the results because it completely removes the illumina-

ion. LIME method produces over-enhanced results while AWVM

ethod tends to generate dim results. Next, we compare differ-

nt methods on the real weakly illuminated images captured un-

er varying illumination circumstances in Fig. 5 . 

In Fig. 5 , for the real weakly illuminated images, all of com-

ared results have the same trend with those of synthetic images.

pecifically, for images with non-uniform illumination inside im-

ges ( i.e ., images “girl “group photo”, and “girl2”) where dark and

right areas coexist, HE and LIME methods produce over-enhanced

nd unrealistic results ( e.g ., the hands of image “group photo” in

he result of HE method and the clothing of image “girl2” in the

esult of LIME method). The proposed method produces natural ap-

earance without over or under enhanced regions owe to the ac-

urate estimation of illumination maps which are used to enhance

he dark areas and maintain the bright areas. For the image with

xtremely low lighting ( i.e ., image “tree”), HE and LIME methods

nveil more details of scenario while they introduce artifacts and

ver-saturated regions ( e.g ., the footpath and tree trunk). For the

mage with back lighting ( i.e ., “man”), HE and LIME methods intro-

uce artifacts ( e.g ., the front regions) and over-enhanced regions.

or both non-uniformly illuminated images and back lighting im-

ge, the results of MSR are gray and unrealistic because the illu-

ination is completely removed. The results of AWVM look simi-

ar with our results which look pleasing and natural. Overall, the

roposed method produces visual pleasing results for the weakly

lluminated images taken under varying circumstances and the de-
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Fig. 5. Qualitative comparisons on real images taken under varying illumination circumstances such as non-uniform illumination, extremely low lighting, and back lighting. 

From left to right are “girl1”, “trees”, “group photo”, “girl2”, and “man”. 
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Table 3 

Quantitative results on synthetic images in terms 

of MSE, PSNR, and SSIM. 

Method MSE PSNR SSIM 

HE 1.1623 × 10 3 19.5022 0.7829 

MSR 6.7849 × 10 3 9.9812 0.6563 

AWVM 2.9654 × 10 3 14.9027 0.7967 

LIME 1.5017 × 10 3 18.2530 0.8620 

Ours 0.8827 × 10 3 21.7146 0.9257 
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Table 4 

User study on real weakly illuminated images. 

Method HE MSR AWVM LIME Ours 

Scores 74.10 32.59 50.21 82.88 89.47 

Fig. 6. Failure cases of our method. (a) Weakly illuminated images. From left to 

right are image captured by low quality device and image with JPG compression 

format. (b) Results of our method. The reader is encouraged to zoom in for a better 

view. 
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ails of scenes and objects are well restored. Observing the esti-

ated illumination maps by LIME method and our method, it is

bvious that LIME method tends to discard the details and tex-

ures of the scenes ( i.e ., image “tree”) when compared to our il-

umination maps, which leads to the suboptimum results of LIME

ethod. It also illustrates that the illumination map estimated by

NN is more robust than conventional method. 

.3. Quantitative comparisons 

To our best knowledge, there is no quantitative evaluation met-

ic designed for weakly illuminated image enhancement methods.

ence, different researchers utilize different strategies to evalu-

te their results. Most of previous methods use the no-reference

r full-reference image quality assessment metrics, such as Wang

t al. [25] , Xue et al. [27] , and Peng et al. [22] to quantitatively as-

ess their methods. However, it is unfair, especially for real weakly

lluminated images, since these metrics do not take the character-

stics of weakly illuminated image into account. Additionally, there

s no real weakly illuminated database with ground truth available

or full-reference image quality assessment metrics. Because most

f low light image enhancement methods can achieve good results,

t is hard to rank them visually. In order to fair compare different

ethods, we carry out two quantitative comparisons. For synthetic

eakly illuminated images, we use MSE, Peak Signal-to-Noise Ratio

PSNR), and Structural Similarity (SSIM) [26] to measure the differ-

nces between the results and ground truth. For real illuminated

mages, we do a user study on a dataset collected from Internet. 

We collect 100 clear illuminated images, and then synthesize

00 weakly illuminated images based on Eq. (1) using the same

pproach with our network training data generation. Parts of syn-

hetic images and the enhanced results have been shown in Fig. 4 .

n the comparisons on synthetic images, we compare the differ-

nces between the enhanced result and ground truth ( i.e ., the cor-

esponding clear illuminated image from Internet). Table 3 sum-

arizes the average evaluation values in terms of MSE, PSNR, and

SIM for the results on the 100 synthetic images. In Table 3 , the

alues in bold represent the best results. 

As shown in Table 3 , the proposed method stands out among

he compared methods in terms of MSE, PSNR, and SSIM values.

he best values indicate that the results of the proposed method

re most close to the ground truth and demonstrate the effective-

ess of the proposed method. In addition, it is interesting that the

roposed method achieves the best performance on SSIM evalua-

ion metric, although our LightenNet is optimized by the MSE loss

unction. 

Furthermore, we conduct a user study on an image dataset

hich includes 40 real weakly illuminated images collected from

nternet. These images are with a variety of content and light con-

itions ( e.g ., well-lit, low light level, extremely low light level, non-

niform illumination, back lighting, and so on). Parts of collected

mages and the enhanced results have been shown in Fig. 5 . The

nhanced results are randomly displayed on a screen and sepa-

ately scored by 7 participants who have image processing techni-

al background according to visual quality. We repeat the scoring
 times and summarize the average scores (from 0 (worst) to 100

best)) for the results of different methods in Table 4 . 

In Table 4 , the user study results demonstrate that even for real

eakly illuminated images captured under diverse illumination cir-

umstances, the proposed method also can achieve visual pleasing

esults and is robust for different kinds of weakly illuminated im-

ges. 

.4. Failure cases 

When training our LightenNet, we just consider the weakly il-

uminated images with good quality. Therefore, our method shows

imitation when it is used to enhance weakly illuminated images

ith low quality such as noise and JPG compression. Fig. 6 presents

everal failure cases of our method. 

In Fig. 6 , our method amplifies the noise in the weakly illu-

inated image taken by the device are of low quality and in-

roduces blocking artifacts for weakly illuminated image with JPG

ompression format. In the future work, we will take the effects

f low quality weakly illuminated images into consideration when

e train our network. 

. Conclusion 

In this letter, we propose an effective CNN-based weakly il-

uminated image enhancement method. The proposed LightenNet

earns a mapping between weakly illuminated image and the cor-

esponding illumination map which is subsequently used to ob-

ain the enhanced image. Our results are characteristics with nat-

ral and realistic appearance and improved brightness and con-

rast. The proposed method achieves superior performance than

he state-of-the-art methods on both qualitative and quantitative

omparisons. 
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