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Weak illumination or low light image enhancement as pre-processing is needed in many computer vi-
sion tasks. Existing methods show limitations when they are used to enhance weakly illuminated images,
especially for the images captured under diverse illumination circumstances. In this letter, we propose
MSC: a trainable Convolutional Neural Network (CNN) for weakly illuminated image enhancement, namely

41A05 LightenNet, which takes a weakly illuminated image as input and outputs its illumination map that is
41A10 subsequently used to obtain the enhanced image based on Retinex model. The proposed method pro-
65D05 duces visually pleasing results without over or under-enhanced regions. Qualitative and quantitative com-
65D17 parisons are conducted to evaluate the performance of the proposed method. The experimental results
Keywords: demonstrate that the proposed method achieves superior performance than existing methods. Addition-

ally, we propose a new weakly illuminated image synthesis approach, which can be use as a guide for
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weakly illuminated image enhancement networks training and full-reference image quality assessment.
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1. Introduction

High quality images and videos are needed in both computer
vision applications (e.g., object detection and tracking) and con-
sumer electronics (e.g., hand-hold devices). However, images and
videos captured under weak illumination conditions often suf-
fer from noticeable degradation of visibility, brightness, and con-
trast. Accordingly, weak illumination image enhancement as pre-
processing is of significance and also desired.

Despite numerous methods [4-7,9,11,19-21,24,28] have been de-
veloped for degraded image and video enhancement, there are still
some issues that remain to be resolved for weak illumination im-
age enhancement. Therefore, we propose a new method to en-
hance images captured under poorly-lit circumstances. First, we
build our method on the Retinex model [18] which can be used
to enhance image via estimating its illumination map. Thus, the
key to achieve enhanced image is to estimate an accurate illumina-
tion map. Then, we formulate a compact and efficient CNN, namely
LightenNet, which takes a weakly illuminated image as input and
outputs its illumination map that is subsequently used to obtain
the enhanced image based on Retinex model. Both qualitatively
and quantitatively experimental results show that our method
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generates accurate illumination maps and achieves more natural-
looking results and better details than the state-of-the-art meth-
ods. Additionally, our method generalizes well to the images cap-
tured under varying illumination conditions. Here, varying illumi-
nation conditions represent non-uniform illumination, back light-
ing, extremely weak illumination intensity, well-lit, and so forth.
The main contributions of this letter are summarized as follows:

e We propose a trainable CNN for weak illumination image en-
hancement. Different from several existing CNN-based image
enhancement methods which directly estimate the enhanced
or restored image, our LightenNet learns to predict the map-
ping relations between weakly illuminated image and the cor-
responding illumination map. Thus, LightenNet is easy to be
trained. It just takes 1 h to optimize our LightenNet.

Based on Retinex model, we propose a new method for weakly
illuminated image synthesis, which can be use as a guide for
subsequent network training and full-reference image quality
assessment.

Compared to existing weak illumination image enhancement
methods, our CNN-based method achieves the state-of-the-art
performance on both synthetic and real weakly illuminated im-
ages.

The remainder of the letter is organized as follows.
Section 2 presents a brief overview of the related work.
Section 3 first reviews Retinex model, and then introduces
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the proposed LightenNet model. Section 4 shows experimental
results. Section 5 concludes this letter.

2. Related work

Over the past few decades, many methods have been proposed
to enhance degraded images. However, fewer methods can gener-
ate ideal results when they are applied to weakly illuminated im-
ages. For example, histogram-based methods [23] usually increase
the dynamic range of the gray values, which leads to suboptimum
enhancement performance for image details. For another example,
physical model-based methods [19,28] usually produce unnatural
and unrealistic results since some priors or assumptions do not al-
ways hold for varying illumination conditions.

In contrast to traditional image enhancement methods, there
are fewer methods that enhance weakly illuminated images. Sev-
eral existing enhancement methods [4,19,28] are based on the ob-
servation that the inverted low-light images intuitively look like
haze images. Such a method first inverts an input low-light image,
and then employs an image dehazing algorithm on the inverted
image, finally achieves the enhanced image by inverting the de-
hazed image. Dehazing-like methods can enhance the visual qual-
ity of low-light images to some extent, however, these methods
lack of cogent physical explanation and tend to produce unrealis-
tic results. Recently, Fotiadou et al. [5] proposed a novel method
to enhance low-light images based on the framework of Sparse
Representations. Fotiadou et al. used two dictionaries (i.e., night
dictionary and day dictionary) to transform the Sparse Represen-
tation of low-light image patches to the corresponding enhanced
image patches. The enhanced results significantly relied on the ac-
curacy of the learned dictionaries. Fu et al. [7] employed fusion-
based method for weakly illuminated image enhancement, which
fused luminance-improved and contrast-enhanced versions of in-
put by two designed weights. Besides, multi-scale fusion scheme
was applied to reduce the amplified artifacts. The enhanced results
are characteristic with improved brightness, contrast, and details.
However, like other fusion-based image enhancement methods,
such a method tends to produce over-enhanced, over-saturated,
and unrealistic results due to ignoring the physical properties of
weak illumination image degradation. Lore et al. [20] proposed a
deep learning-based method to adaptively enhance and denoise
images captured under low-light environments, namely LLNet. Lore
et al. directly employed an existing deep neural network architec-
ture (i.e., stack sparse denoising autoencoder) to build the relations
between the low-light images and the corresponding enhanced
and denoised images. The experimental results demonstrated that
deep learning-based method is suitable for low light image en-
hancement. Guo et al. [11] proposed a simple low-light image en-
hancement method, namely LIME. This method first estimated the
illumination of each pixel in the low-light image, then refined the
initial illumination map by a structure prior, finally the enhanced
image was achieved based on Retinex model using the estimated
illumination map. Besides, in order to reduce the amplified noise,
an existing image denoising algorithm was used as post-processing
in the LIME method.

3. The proposed method

In this section, we begin by describing Retinex model where
we built our method on, and then present the layer design of the
proposed LightenNet and introduce how to enhance weakly illumi-
nated images by the predicted illumination map, last introduce the
implementation details of our LightenNet.

3.1. Retinex model

Following Retinex model proposed by Land [18] which describes
the lightness and color perception of human vision, we explain the
formation of the weakly illuminated image as follows

I(x) = R(x) - L(x). )]

where x denotes a pixel, I(x) is the observed image, R(x) is
the reflectance of the image, and L(x) is the illumination. The
dot “-” means pixel-wise multiplication. The physical meaning of
Eq. (1) can be simply described as that the observed image (i.e.,
weakly illuminated image) can be decomposed into the product
of the reflectance of image R(x) (i.e., desired illuminated image)
and the illumination map L(x) (i.e., dark veiling which degrades
input image). Thus, weak illumination image enhancement means
removing weak illumination from input image. In this letter, our
goal is to achieve the reflectance R(x) from the observed image I(x)
by predicting its illumination map L(x).

3.2. LightenNet

The proposed LightenNet is inspired by the success of deep
learning in low-level vision tasks [1-3]. The purpose of Lighten-
Net is to learn a mapping, which takes a weakly illuminated im-
age as input and outputs its illumination map that is subsequently
used to obtain the enhanced image based on Retinex model. The
architecture of LightenNet is shown in Fig. 1. In the LightenNet ar-
chitecture, input is the weakly illuminated image and the output is
the corresponding illumination map. Similar with Dong et al. [3],
LightenNet contains four convolutional layers with specific tasks.
Observing the feature maps in Fig. 1, different convolutional layers
have different effects on final illumination map. For example, the
first two layers focus on the high light regions and the third layer
focuses on low light regions while the last layer is to reconstruct
the illumination map. The specific operation form of the four con-
volutional layers is described as follows.

Patch extraction and representation: To learn the relations be-
tween weakly illuminated image and its illumination map, we first
extract overlapping image patches from weakly illuminated image
and represents each image patch using a high-dimensional vector
by n; filters, and can be expressed as

F (P) = max(0, W; P+ By), (2)

where P is an input image patch with size n x n, W; and B, are the
weights and biases of filters. The size of W; is f; x f; x ny, where
f1 is the spatial support of a filter, and n; is the number of filters.
B, is an nq-dimensional vector, whose each element is associated
with a filter. “*” represents the convolution operation. max(0, x) is
a Rectified Linear Unit (ReLU) [17], which is applied to accelerate
training convergence and improve performance.

Feature enhancement: Inspired by the feature enhancement
layer used in compression artifact reduction [3], we employ a fea-
ture enhancement layer to map the “noisy” feature to a relatively
“cleaner” feature space since the weakly illuminated images usu-
ally suffer from the effects of noise. It can be expressed as

E(P) = max(0, W, x F (P) + By). (3)

where W, contains n, filters of size f, x f, xnq, and B, is an nj-
dimensional vector.

Non-linear mapping: The next step is to map each high-
dimensional vector onto another high-dimensional vector, namely
transforming F,(P) into F3(P):

E(P) = max(0, W; « K(P) + B3), (4)

where W3 contains nj filters of size f3 x f3 x ny, and Bs is an ns3-
dimensional vector.
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Weakly Illuminated Image

32 Conv 3%6*6 16 Conv 32*7*7
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Illumination Map
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Fig. 1. The architecture of LightenNet. LightenNet consists of 4 convolution layers, i.e., patch extraction and representation, feature enhancement, non-linear mapping, and

reconstruction.

Reconstruction: Lastly, a convolutional layer is designed to ag-
gregate the patch-wise representations to generate the learned il-
lumination map. F3(P) is transformed into F4(P), and can be ex-
pressed as

Ey(P) = Wy * I5(P) + By. (5)

where W, contains ny filters of size f4 x f4 x n3, and By is an ng-
dimensional vector.

These unknown network parameters O =
{Wq,W,, W3, Wy, By, By, B3, B4} are achieved by minimizing Mean
Squared Error (MSE) loss function by supervised learning manner.
MSE loss function is expressed as

N
L(©) = 3 2 IF(E; ©) illu| (©)
i=1

where N is the number of image patch in a training batch, P; rep-
resents a weakly illuminated image patch, illu; is a patch of illumi-
nation map that corresponds to P;, and F is the learned mapping
function.

3.3. Weakly illuminated image enhancement

Following previous method [11], we adjust the estimated illu-
mination map by Gamma correction in order to thoroughly unveil
dark regions in the results, which can be expressed as

L(x)' =L(x)7, (7)

where L(x) is the estimated illumination map and L(x) is the
Gamma corrected illumination map. Here, y = 1.7 is a heuristic
value. We assume that the local region with size n xn of input
image has the same illumination intensity when we optimize the
mapping. Therefore, after Gamma correction, we need to refine the
illumination map by guided image filtering [12] in order to remove
the effects of blocking. In guided image filtering, the red channel
of input image is taken as guided image and the size of filtering
window is 16 x 16. Last, according to Eq. (1), the enhanced image
R(x) can be obtained by

(8)

where x denotes a pixel, I(x) is the weakly illuminated image,
and L.(x) is the refined illumination map. As shown in Fig. 2, our
LightenNet accurately estimates the illumination maps which rep-
resent the illumination intensity. With the accurate illumination
maps, our method generates natural and realistic results where
dark regions are enhanced while light regions (e.g., light source)
are preserved.

3.4. LightenNet implementation

Our model is implemented in the Caffe package [14] and the
LightenNet parameter settings are summarized in Table 1. In the
stage of training LightenNet, the filter weights of each layer are
initialized randomly from a Gaussian distribution, and the biases
are set to 0. The initial learning rate is 0.05, and the learning
rate decreases by 0.5 every 100,000 iterations. The momentum
parameter is set to 0.9. A batch-mode learning method with a
batch size of 128 is applied. The network training is done on a
PC with a Intel(R) Xeon(R) CPU E5-2660 v3 @2.60 GHz and an
Nvidia Titan X GPU within 1 h. Note that this optimization is real
fast.

One challenge of training LightenNet is that deep learning sys-
tems require amount of training data, typically paired with la-
bels or corresponding ground truth. Unfortunately, there is no
enough labelled data available. Different from pervious methods
which use the HDR image as labelled data, we synthesize train-
ing data based on the Retinex model in Eq. (1). Instead of taking
HDR images as labels, our synthesis approach is physical forma-
tion model available, which results in more reasonable and reliable
enhancement performance. In addition, to employ synthetic train-
ing data, we follow the assumptions that image content is inde-
pendent of illumination map and illumination map in image patch
is locally constant (i.e., local region has the same illumination
intensity).

Specifically, we collected 600 clear illuminated images with a
variety of content from Internet for the synthesis of sample pairs
(i.e., pairs of weakly illuminated image and its illumination map).
Here, clear illuminated images mean that images are with well
illumination and contrast but without noise and blurring. please
see the examples in Fig. 3. These 600 clear illuminated images
have different sizes and are with PNG or BMP format. Based on
Eq. (1) Retinex model, given a clear illuminated image R(x) and a
random illumination value L, a weakly illuminated image I(x) can
be synthesized as I(x) = R(x) - L. Here, R(x), L, and I(x) are normal-
ized. Based on these synthesized images, we obtain training im-
age patches by overlapping cropping. The overlapping pixels are
10. At last, a total of 2,052,864 training image patches with size
n x n =16 x 16 are collected. Note that we have assumed that local
region (i.e., 16 x 16) has the same illumination intensity and the as-
sumption is reasonable in the real-world when the image patch is
small enough. Fig. 3 presents several examples of the clear illumi-
nated images and the corresponding synthetic weakly illuminated
images.
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(@)

Fig. 2. Our step-by-step outputs. (a) Weakly illuminated images. (b) Coarse illumination maps estimated by LightenNet. (c) Gamma corrected illumination maps. (d) Refined
illumination maps by guided image filtering. (e) Our enhanced results. In the (b)-(d), different color represents different illumination intensity (from blue to red represents
from 0 to 1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Parameter settings of LightenNet.
Formulation Type Input Size Num Filter Padding
Patch Extraction and Representation  Conv 3x16x 16 m=32 fixfi=6x6 0
RelU 32x11x11 32 - 0
Feature Enhancement Conv 32x11x11 n, =16 foxfo=7x7 0
RelLU 16x5x%x5 16 - 0
Non-linear mapping Conv 16x5x%x5 ns = faixfs=1x1 0
RelU 8x5x5 8 - 0
Reconstruction ConV  8x5x5 ng=1 fax fa=5x%x5 0
Table 2

Average MSE values for different network param-
eter settings and architectures.

Layers  Filters Sizes MSE
4 16-8-4-1 6-7-1-5 0.04225
4 32-16-8-1 6-7-1-5  0.00816
4 64-32-16-1 6-7-1-5 0.00623
4 128-64-32-1 6-7-1-5 0.00565
4 32-16-8-1 3-9-1-6  0.00865
4 32-16-8-1 5-7-1-6  0.04225
Fig. 3. Examples of the clear illuminated images and the corresponding synthetic 4 32-16-8-1 6-7-1-5  0.00816
weakly illuminated images. From top to bottom are the clear illuminated images 4 32-16-8-1 7-5-1-6  0.00927
and the corresponding synthetic weakly illuminated images. From left to right, the 4 32-16-8-1 6-7-1-5  0.00816
illumination values L are 0.5159, 0.0088, 0.2328, and 0.4475. 4 32-16-8-1 6-7-3-5  0.00771
4 32-16-8-1 6-7-5-5  0.00750
4 32-16-8-1 6-7-7-5  0.00717
4. Experiment results 4 32-16-8-1 6-7-1-5  0.00816
8 32-16-8-1 6-7-1-5 0.00897
In this section, we first investigate the relations between the 12 32-16-8-1 6-7-1-5  0.00923
16 32-16-8-1 6-7-1-5 0.01243

performance of LightenNet and network parameter settings. Next,
we present the qualitative and quantitative comparisons on differ-
ent types of weakly illuminated images. At last, we present several
failure cases of our method and discuss the reasons.

4.1. Model and performance trade-offs

Based on the basic network parameter settings presented in
Table 1, we will investigate the effects of different parameter set-
tings and architectures. The MSE values for different settings are
summarized in Table 2. The MSE value for our basic network pa-
rameter settings is marked in bold. The basic filter number settings
of LightengNet are ny = 32, n, = 16, n3 =8, and n4 = 1, and could
be denoted as 32-16-8-1. Following this denotation, we denote an-
other 3 filter number settings as 128-64-32-1, 64-32-16-1, and 16-
8-4-1 to show the effects of filter number. Then, we present the

effects of filter size. The basic filter size settings of our network
are f1 =6, f, =7, f3y=1, and f, =5, and could be denoted as 6-
7-1-5. Inspired by Sparse Representation-based method [5], we fix
the filter size of third layer to be 1 (i.e., f3 = 1), and change filter
size of other layers. We denote another 3 filter size settings as 7-5-
1-6, 5-7-1-6, and 3-9-1-6. Besides, we also remove the 1 x 1 filter
size constraint to investigate the effects of sparse-representation-
based constraint. We denote another 3 filter size settings as 6-7-3-
5, 6-7-5-5, and 6-7-7-5. At last, we investigate the effects of layer
number. The default layer number is 4 (i.e., patch extraction and
representation layer, feature enhancement layer, non-linear map-
ping layer, and reconstruction layer). We repeat original architec-
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Fig. 4. Qualitative comparisons on synthetic images. (a) Synthetic weakly illuminated images. (b) Results of HE [10]. (c) Results of MSR [15]. (d) Results of AWVM [8]. (e)

Results of LIME [11]. (f) Results of our method. (g) Ground truth.

ture several times in order to add more layers. 8, 12, and 16 repre-
sent repeating 2 times, 3 times, and 4 times original architecture.

As shown in Table 2, with filter number increasing, the supe-
rior MSE performance could be achieved. However, the improve-
ment is limited. As we all known, the limited improvement is at
the cost of training time and processing time. Thus, we select a
middle network filter number as our basic filter number settings
based on the trade off between performance and complexity. In
addition, our basic filter size settings obtain best result among MSE
comparisons. That may be because our filter size settings could
grasp richer structural information, which in turn leads to bet-
ter performance. It also demonstrates that a reasonable filter size
settings could achieve better performance. For the 1 x 1 filter size
constraint, we found that breaking this constraint could introduce
the limited improvement at the cost of training time and process-
ing time. Thus, we retain 1 x 1 constraint in our network since this
constraint is effective and efficient for our network design. At last,
with more layers, we do not obtain better MSE performance. The
reason might be (1) the effects of gradient diffusion; (2) simple
original architecture repeat results in unreasonable network archi-
tecture. In the future work, we will investigate more reasonable
deep network architectures such as He et al. [13] and Kim et al.
[16] for weakly illuminated image enhancement.

4.2. Qualitative comparisons

In this part, we qualitatively compare our method with classi-
cal HE (Histogram Equalization) method [10] and MSR (Multi-scale
Retinex) method [15], and the state-of-the-art methods (i.e., LIME
[11] and AWVM [8]) on synthesized and real weakly illuminated
images.

Firstly, we carry out qualitative comparisons on synthesized
weakly illuminated images. These images are synthesized based
on Retinex model in Eq. (1). Specifically, the synthesis approach

has been illustrated in Section 3.4. Qualitative comparisons on syn-
thetic images are presented in Fig. 4.

In Fig. 4, compared with synthetic weakly illuminated im-
ages, all of methods successfully improve the luminance and con-
trast. Compared to ground truth, the results of our method are
most close to the ground truth of the weakly illuminated im-
ages. HE method increases the global contrast, which leads to
over or under-enhanced regions. MSR method introduces gray veil-
ing on the results because it completely removes the illumina-
tion. LIME method produces over-enhanced results while AWVM
method tends to generate dim results. Next, we compare differ-
ent methods on the real weakly illuminated images captured un-
der varying illumination circumstances in Fig. 5.

In Fig. 5, for the real weakly illuminated images, all of com-
pared results have the same trend with those of synthetic images.
Specifically, for images with non-uniform illumination inside im-
ages (i.e., images “girl “group photo”, and “girl2”) where dark and
bright areas coexist, HE and LIME methods produce over-enhanced
and unrealistic results (e.g., the hands of image “group photo” in
the result of HE method and the clothing of image “girl2” in the
result of LIME method). The proposed method produces natural ap-
pearance without over or under enhanced regions owe to the ac-
curate estimation of illumination maps which are used to enhance
the dark areas and maintain the bright areas. For the image with
extremely low lighting (i.e., image “tree”), HE and LIME methods
unveil more details of scenario while they introduce artifacts and
over-saturated regions (e.g., the footpath and tree trunk). For the
image with back lighting (i.e., “man”), HE and LIME methods intro-
duce artifacts (e.g., the front regions) and over-enhanced regions.
For both non-uniformly illuminated images and back lighting im-
age, the results of MSR are gray and unrealistic because the illu-
mination is completely removed. The results of AWVM look simi-
lar with our results which look pleasing and natural. Overall, the
proposed method produces visual pleasing results for the weakly
illuminated images taken under varying circumstances and the de-
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(h) Estimated illumination maps by L1ghtenNet

Fig. 5. Qualitative comparisons on real images taken under varying illumination circumstances such as non-uniform illumination, extremely low lighting, and back lighting.
From left to right are “girl1”, “trees”, “group photo”, “girl2”, and “man”.
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Table 3
Quantitative results on synthetic images in terms
of MSE, PSNR, and SSIM.

Method ~ MSE PSNR SSIM

HE 11623 x 103 19.5022  0.7829
MSR 6.7849 x 103> 9.9812 0.6563
AWVM 29654 x10°  14.9027  0.7967
LIME 1.5017 x 103 18.2530  0.8620
Ours 0.8827 x10°  21.7146  0.9257

tails of scenes and objects are well restored. Observing the esti-
mated illumination maps by LIME method and our method, it is
obvious that LIME method tends to discard the details and tex-
tures of the scenes (i.e., image “tree”) when compared to our il-
lumination maps, which leads to the suboptimum results of LIME
method. It also illustrates that the illumination map estimated by
CNN is more robust than conventional method.

4.3. Quantitative comparisons

To our best knowledge, there is no quantitative evaluation met-
ric designed for weakly illuminated image enhancement methods.
Hence, different researchers utilize different strategies to evalu-
ate their results. Most of previous methods use the no-reference
or full-reference image quality assessment metrics, such as Wang
et al. [25], Xue et al. [27], and Peng et al. [22] to quantitatively as-
sess their methods. However, it is unfair, especially for real weakly
illuminated images, since these metrics do not take the character-
istics of weakly illuminated image into account. Additionally, there
is no real weakly illuminated database with ground truth available
for full-reference image quality assessment metrics. Because most
of low light image enhancement methods can achieve good results,
it is hard to rank them visually. In order to fair compare different
methods, we carry out two quantitative comparisons. For synthetic
weakly illuminated images, we use MSE, Peak Signal-to-Noise Ratio
(PSNR), and Structural Similarity (SSIM) [26] to measure the differ-
ences between the results and ground truth. For real illuminated
images, we do a user study on a dataset collected from Internet.

We collect 100 clear illuminated images, and then synthesize
100 weakly illuminated images based on Eq. (1) using the same
approach with our network training data generation. Parts of syn-
thetic images and the enhanced results have been shown in Fig. 4.
In the comparisons on synthetic images, we compare the differ-
ences between the enhanced result and ground truth (i.e., the cor-
responding clear illuminated image from Internet). Table 3 sum-
marizes the average evaluation values in terms of MSE, PSNR, and
SSIM for the results on the 100 synthetic images. In Table 3, the
values in bold represent the best results.

As shown in Table 3, the proposed method stands out among
the compared methods in terms of MSE, PSNR, and SSIM values.
The best values indicate that the results of the proposed method
are most close to the ground truth and demonstrate the effective-
ness of the proposed method. In addition, it is interesting that the
proposed method achieves the best performance on SSIM evalua-
tion metric, although our LightenNet is optimized by the MSE loss
function.

Furthermore, we conduct a user study on an image dataset
which includes 40 real weakly illuminated images collected from
Internet. These images are with a variety of content and light con-
ditions (e.g., well-lit, low light level, extremely low light level, non-
uniform illumination, back lighting, and so on). Parts of collected
images and the enhanced results have been shown in Fig. 5. The
enhanced results are randomly displayed on a screen and sepa-
rately scored by 7 participants who have image processing techni-
cal background according to visual quality. We repeat the scoring

Table 4
User study on real weakly illuminated images.

Method  HE MSR AWVM  LIME Ours

Scores 7410 3259 5021 82.88 8947

(b)

Fig. 6. Failure cases of our method. (a) Weakly illuminated images. From left to
right are image captured by low quality device and image with JPG compression
format. (b) Results of our method. The reader is encouraged to zoom in for a better
view.

5 times and summarize the average scores (from 0 (worst) to 100
(best)) for the results of different methods in Table 4.

In Table 4, the user study results demonstrate that even for real
weakly illuminated images captured under diverse illumination cir-
cumstances, the proposed method also can achieve visual pleasing
results and is robust for different kinds of weakly illuminated im-
ages.

4.4. Failure cases

When training our LightenNet, we just consider the weakly il-
luminated images with good quality. Therefore, our method shows
limitation when it is used to enhance weakly illuminated images
with low quality such as noise and JPG compression. Fig. 6 presents
several failure cases of our method.

In Fig. 6, our method amplifies the noise in the weakly illu-
minated image taken by the device are of low quality and in-
troduces blocking artifacts for weakly illuminated image with JPG
compression format. In the future work, we will take the effects
of low quality weakly illuminated images into consideration when
we train our network.

5. Conclusion

In this letter, we propose an effective CNN-based weakly il-
luminated image enhancement method. The proposed LightenNet
learns a mapping between weakly illuminated image and the cor-
responding illumination map which is subsequently used to ob-
tain the enhanced image. Our results are characteristics with nat-
ural and realistic appearance and improved brightness and con-
trast. The proposed method achieves superior performance than
the state-of-the-art methods on both qualitative and quantitative
comparisons.
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