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Abstract

Large Vision-Language Models (VLMs) rely on effective multimodal alignment be-
tween pre-trained vision encoders and Large Language Models (LLMs) to integrate
visual and textual information. This paper presents a comprehensive analysis of at-
tention patterns in efficient VLMs, revealing that concatenation-based architectures
frequently fail to distinguish between semantically matching and non-matching
image-text pairs. This is a key factor for object hallucination in these models.
To address this, we introduce Attention-Guided Efficient Vision-Language Mod-
els (AGE-VLM)—a novel framework that enhances visual grounding through
interleaved cross-attention layers to instill vision capabilities in pretrained small
language models. This enforces in VLM the ability "look" at the correct image re-
gions by leveraging spatial knowledge distilled from the Segment Anything Model
(SAM), significantly reducing hallucination. We validate our approach across
different vision-centric benchmarks where our method is better or comparable to
prior work on efficient VLMs. Our findings provide valuable insights for future
research aimed at achieving enhanced visual and linguistic understanding in VLMs.

1 Introduction

Large Vision-Language Models (VLMs) [2, 24, 32, 35, 38, 47] leverage the capabilities of pre-
existing Large Language Models (LLMs) [1, 5, 11] to address complex tasks. Although LLMs excel
in text-only domains such as natural language understanding [11], mathematics [6], and coding [17]
by following task-specific instructions, VLMs extend these abilities to the multimodal realm. This
enables them to perform tasks like image understanding, captioning, object localization, and multi-
turn visual question answering. Architecturally, VLMs typically consist of three key components: a
vision encoder to process visual input, an adapter to map visual representations into the language
model’s token space, and a decoder-only LLM that processes these combined representations. The
fusion of visual and textual information is commonly achieved either by concatenating visual tokens
with text tokens for processing by self-attention layers or by interleaving visual tokens using dedicated
cross-attention layers within the LLM [2, 11].

Recent research [33, 35, 36] has shown a significant challenge in VLMs: a tendency to ignore
visual modality representations when performing vision-language tasks. These models may produce
answers, whether correct or incorrect, relying solely on textual instructions and associated questions,
thereby ignoring crucial visual information. Tong et al. [35] observe that the performance gap with
and without visual information is less than a 5% on multiple benchmarks including MMMU [43],
MathVista [27], and AI2D [13]. To mitigate this, various efforts have focused on enhancing visual
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capabilities, including curating vision-centric datasets [35] and improving vision-text alignment
through auxiliary mechanisms such as specialized projection mechanisms [28]. However, these
limitations often persist even in efficient frameworks designed for smaller-scale models with fewer
parameters. Despite such enhancements, many multimodal approaches still struggle with effective
visual information processing, exhibiting issues like object hallucination [12] as shown in Fig. 1.

Many efficient VLMs [8, 37] employ convolutional vision encoders like ConvNeXt [26]. To enable
vision-language capabilities, ConvNeXt is trained contrastively with CLIP [8]. However, this
approach leads to lack of fine-grained spatial grounding in the visual features. During standard
VLM training, given the LLM’s strong language prior and the use of next-token prediction with
cross-entropy loss, the model fails to recover the fine-grained visual information. While larger
models [23, 38] can integrate features from multiple encoders (e.g., DINO [29] , ViT[7]) to improve
grounding, this is unfeasible for resource-constrained VLMs.

To endow the efficient models with spatial grounding of the vision features and to mitigate object
hallucination, we propose a novel framework called Attention-Guided Efficient VLM (AGE-VLM).
Our approach modifies a standard LLM by interleaving cross-attention layers with its existing self-
attention layers. The core idea is to distill spatial knowledge from the Segment Anything Model
(SAM) [15] directly into these cross-attention mechanisms. This is achieved by optimizing the
cross-attention weights to align with segmentation masks generated by SAM for relevant text queries.
Consequently, the VLM learns to "look" at the correct regions of interest when processing multimodal
inputs. A key advantage is the data efficiency of this distillation process, enabling enhanced grounding
with limited training examples. We make following contributions:

• We analyze the vision and text features in the hidden states of the efficient VLMs and
uncover their limitations in disambiguating the semantics between similar and dissimilar
image-text pairs to uncover limitations in vision-centric tasks including object hallucination.

• To endow relatively small LLMs (1B parameter models) with vision capabilities in an
efficient manner, we propose a new efficient multimodal framework with cross-attention
layers which leverage attention-guidance from segmentation model (SAM).

• To distill knowledge from the SAM model, we introduce a four stage training paradigm
which seamlessly integrates the vision features with the pretrained LLM without effecting
the language capability of the underlying model. Our efficient AGE-VLM with guidance
loss only during pretraining stage outperforms prior art across vision-centric tasks.

2 Related Work

Efficient VLMs. Vision–language models (VLMs) combine a visual encoder with a large language
model to support multi-modal reasoning. Recent research has explored making VLMs more effi-
cient and compact without sacrificing performance by using compressed image embedding and a
smaller-sized language model. ConvLLaVA [8] swaps the standard ViT[7] for a ConvNeXt[26]
encoder, cutting the number of visual-token for high-resolution images. FastVLM [37] introduces a
hybrid vision encoder that yields far fewer tokens and achieves a better speed-accuracy trade-off. Mo-
bileVLM [39] reaches real-time speed on edge devices through extensive ablation of design choices.
VL-Mamba [31] replaces the Transformer with linear-time state-space (SSM) layers, delivering
near-linear scaling in sequence length while retaining competitive accuracy. Mini-Gemini[19] adopts
a dual-encoder scheme (low-res ViT plus high-res ConvNeXt); the visual-token budget stays fixed,
and high-resolution details are injected only when needed. Finally, TinyLLaVA [46], AppVLM [30],
and VILA [22] report further gains from better training recipes, thorough dataset curation, and deep
understanding of pre-training.

Attention in VLMs. Most modern VLMs fuse vision and language information through carefully
designed attention layers for comprehensive reasoning [3, 6]. Flamingo[2] encodes images with a
Perceiver module and feeds them into the language model via gated cross-attention. BLIP-2[18]
uses a Q-Former that queries image features and hands a compact token set to the LLM, injecting
visual clues at multiple points to the language model with relatively few new parameters. Recent
studies also highlight limitations in existing attention patterns and propose remedies. Zhang et al. [44]
shows that performance falls sharply when the target object is small; a training-free, attention-guided
cropping strategy recovers most of the lost accuracy. LRR[3] interleaves top-down cross-attention
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Prompt: Considering the relative positions of the wall (annotated by the red box) and the 
fireplace in the image provided, where is the wall (annotated by the red box) located with 
respect to the fireplace? Select from the following choices. (A) left (B) right 

Groundtruth: (A) 

MobileVLM-V2: The image shows a living room with a fireplace, a couch, and a chair. 
The wall (annotated by the red box) is located to the left of the fireplace. The fireplace is 
in the middle of the room. The couch is to the right of the fireplace. The chair is to the left 
of the couch. The relative positions of the objects are as described. The answer is B. 

Ours: The wall (annotated by the red box) is located to the left of the fireplace.

Prompt: How many cats are in the image? Select from the following choices. (A) 2 (B) 1 
(C) 4 (D) 3 (E) 0 

Groundtruth: (B) 

MobileVLM-V2: 3 

Ours: The correct answer is (B) 1. The image shows only one cat, which is the orange 
and white cat looking at its reflection in the glass. There are no other cats present in the 
image.

Figure 1: Object hallucination and mitgation in efficient vision language models. We show that
prior work on efficient VLMs fails to localize (top) and correctly count the number of objects (cat) in
images. Our attention guided efficient VLMs approach equipped with the knowledge distillation from
Segment Anything Model in the cross-attention weights can effectively generate correct responses
with explanation grounded in the visual domain.

(a) Similarity for ConvLLaVA [8] (b) Similarity for MobileVLM-v2 [39].

Figure 2: Similarity analysis. Cosine similarly between the hidden states of the images and text
tokens of the last self-attention layer in existing efficient architectures. The similarities overlap for
non-matching pairs indicating a gap in the alignment of visual signal with text.

blocks amid the LLM’s self-attention, grounding generation in fine-grained video frames. Kang et al.
[14] observes biased attention toward irrelevant visual tokens and introduces visual-attention-sink
suppression to redistribute focus and boost accuracy.

Hallucination in VLMs. Hallucination is well-known chronic problem in LVM. Misalignment
between visual evidence and textual generation, especially in cluttered scenes, often drives such
errors. Several benchmarks reveal that some VLMs perform similarly with or without visual input,
implying that the language model may ignore image cues[10, 16, 21, 48, 45] To enhanced alignment,
EMMA[9] balances structural and hierarchical representations, reducing hallucinated objects and
sharpening visual grounding. Modular attribution studies find that multi-head attention poses higher
hallucination risk than MLP blocks; disabling “hallucination heads” yields simple yet effective
mitigation [42]. New evaluation suites now include explicit hallucination tests [12, 20, 35]. For
instance, the Multi-Object Hallucination [4] dataset probes scenarios where models overlook vivid
visual clues; its curated corner cases trace errors to language bias and skewed object distributions.
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3 Vision in Vision-Language Models

In this section, we will first investigate the underlying cause of object hallucination and limitations
in processing the visual information in efficient VLMs. Based on our findings, we then propose a
framework to mitigate this.

3.1 Attention analysis in VLMs

To understand the underlying causes of object hallucination and the tendency of VLMs–which are
built on existing LLM backbones–to underutilize visual features, we analyze the semantic alignment
between hidden states derived from their image and text modalities. Specifically, we compute the
cosine similarity between the final hidden states of image tokens (or their projected representations)
and text tokens, as visualized in Fig. 2. Our analysis considers two distinct concatenation-based
models: ConvLLaVA, which pairs a convolutional vision backbone with a LLaMA-7B language
model, and MobileVLM-v2, which utilizes a CLIP ViT-L/14 vision encoder with a LLaMA-1.4B
language model.

For both ConvLLaVA and MobileVLM-v2, a critical observation is the significant overlap in similar-
ity score distributions between matching (ground-truth image-text pairs) and non-matching (randomly
paired images and texts from the batch/dataset) examples. This suggests these architectures systemat-
ically struggle to distinguish semantically coherent visual-textual pairs from incoherent ones using
their hidden representations.

For ConvLLaVA (Fig. 2a), although the similarity scores for non-matching pairs are appropriately
skewed towards lower values (∼ 0.2−0.3)–demonstrating some discriminative ability–the distribution
for matching pairs is disappointingly centered around a modest ∼ 0.5. Ideally, correctly matched
pairs should exhibit a distribution strongly skewed towards higher scores (e.g., > 0.8), signifying
robust alignment between visual concepts and textual descriptions. This current observation implies
that even when an image and text are semantically related, their respective hidden states are not
achieving the desired close alignment in the shared embedding space.

MobileVLM-V2 (Fig. 2b) exhibits indiscriminately high similarity scores for both matching and
non-matching pairs, with both distributions peaking at very high values (e.g., ∼ 0.96− 0.98). This
consistent high similarity, irrespective of actual image-text semantic relevance, suggests a critical
limitation in its ability to capture meaningful underlying multimodal semantic information.

This behavior is a strong indicator for object hallucination in VLMs and the dependence of the
generation process on the strong language priors. Indeed, if non-matching pairs consistently achieve
high similarity scores, it implies that visual features are failing to sufficiently constrain the LLM.
Consequently, generation becomes unanchored from the visual input, driven instead by the LLM’s
internal biases or textual context, which leads to both object hallucination and a tendency to disregard
specific visual details.

To mitigate object hallucination in efficient VLMs, our work introduces cross-attention layers
whose attention weights are distilled from the Segmentation Anything Model (SAM), thereby better
grounding the pretrained LLM in visual information.

3.2 Attention guided Efficient VLM Approach

We present AGE-VLM, an efficient multimodal model that seamlessly integrates visual features with
a language model architecture. AGE-VLM employs a ConvNext vision encoder and the LLaMA-1B
decoder-only language model. The vision features are modulated by text tokens through cross-
attention layers which are explicilty guided by distilling knowledge from SAM (c.f. Fig. 3).

3.2.1 Efficient Vision-Language Architecture

Efficient vision backbone. Similar to prior VLMs employing convolutional backbones, we utilize
a ConvNeXT to extract visual features. Convolutional networks advantageously process higher-
resolution images with fewer visual tokens compared to ViTs. Given an input image I of spatial
resolution H ×W , the ConvNeXT backbone processes it through multiple convolutional stages*. We

*Not to be confused with VLM training stages.
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Figure 3: Overall architecture of our attention-guided efficient vision language model. During
training, given the input image and the associated instruction, we perform knowledge distillation
from SAM by explicitly aligning the language-conditioned masks with the cross-attention weights of
our modified LLaMA-1B backbone.

extract the spatial feature map I ′ from the output of the fourth stage, which retains spatial information
crucial for detailed visual understanding. This map I ′ is then flattened and projected by two linear
layers into a sequence of h× w visual tokens, each with dimension d to match our language model’s
embedding dimension.

Efficient LLaMA-1B backbone. We employ LLaMA-1B as our language backbone, selected for
its relatively small size, making it suitable for resource-constrained scenarios. The model processes
tokenized text sequences. During training, most of LLaMA’s parameters–specifically its self-attention
and feed-forward network (FFN) weights–are kept frozen to preserve its powerful language priors
and reduce training costs.

Interleaved cross-attention layers. To directly integrate visual information into the language
model, we introduce cross-attention mechanisms within the LLaMA architecture. Instead of a simple
prefix or concatenation approach, we interleave lightweight cross-attention modules into specific
LLaMA decoder blocks. For LLaMA-1B, which has 16 decoder layers, these cross-attention modules
are strategically inserted. A standard LLaMA decoder layer i typically processes input hidden states
Hi−1 as follows:

Hi = SELFATTENTION(LAYERNORM(Hi−1)),

Hi = Hi +Hi−1,

Hi = Hi + MLP(LAYERNORM(Hi)). (1)

We modify select layers–specifically those indexed 2, 7, 12, and 17 in LLaMA-1B–by inserting
a cross-attention module after the standard self-attention sub-layer. This inserted cross-attention
module takes the output of the self-attention sub-layer, Hi, and the visual features I ′ (extracted by
the ConvNeXT encoder and transformed by an adapter to match the LLM’s hidden state dimension)
as input. Within this cross-attention module, the hidden states from the self-attention sub-layer serve
as queries Q = Wq(Hi), while the transformed visual features serve as keys K = Wk(I

′) and values
V = Wv(I

′). The operation is then:

HCA = CROSSATTENTION(Q,K, V ),

HCA = Hi +HCA,

HCA = HCA + MLP(LAYERNORM(HCA)). (2)

This interleaved structure allows the model to dynamically ground textual concepts in visual features
at multiple semantic levels within the LLM. The weights Wq,Wk,Wv and the parameters within the
CrossAttention blocks with multi-head attention are trainable.
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Table 1: Training stages of our Attention-guided Efficient Vision Language Model.

Model Training Loss

Training Stage Vision Encoder Adapter LLM(CA) LLM(SA) LM Loss Guidance Loss
Stage 1 � \ \ � ✓ %

Stage 2 \ \ \ � ✓ %
Stage 3 \ \ \ � ✓ ✓
Stage 4 (AGE-VLM) \ \ \ \ ✓ %
Stage 4 (AGE-VLM-LM) \ \ \ \ ✓ ✓

3.2.2 Spatial Grounding Distillation using SAM

To account for the lack of spatial localization in VLMs optimized with the cross-entropy loss for
next token prediction, we perform knowledge distillation from the Segment Anything Model in the
cross-attention layers our model. For this, during pretraining stage, we take the 77K image-caption
pairs corresponding to ∼ 10 percent of the pretraining data of Cambrian 2.5M. Analogously, during
fine-tuning, we take the 150K image-instruction or image-question pairs from the Cambrian 10M.
Using these language queries, we obtain the language-grounded masks for the images using SAM.

Given the image I of spatial resolution H ×W , and the text prompt query tq (ignoring the special
tokens) we obtain the mask M ∈ {0, 1}H×W . The mask is then downsampled to match the vision
feature encoder’s spatial resolution h× w yielding M ′ ∈ {0, 1}h×w. Given the attention weights Al,
output of softmax in cross-attention layer corresponding to layer l, where l ∈ l1, . . . , ln and n is the
number of cross-attention layers, the attention weights for the query token tq are averaged across all
the heads in the attention layer and are reshaped to h× w yielding Aq

l . Consider an example of a
text prompt with 10 tokens and 576 image tokens, the cross-attention layers with 32 heads would
ouput the attention weights Al of size 32× 10× 576. These weights are averaged along the first two
dimensions providing 576 dimensional Aq

l . These attention weights are then normalized to obtain a
attention distribution P q

l , We perform distillation using the dice loss to localize the attention maps on
the region represented by the mask,

Lg = − log

[
2.⟨vec(M ′).vec(P q

l )⟩∑
i,j M

′
i,j +

∑
i,j P

q
l

]
(3)

Here, vec(.) flattens the input to a 1-d representation. The advantage of dice loss is that it directly
optimizes for the overlap between predicted and ground truth masks accounting for sparse regions of
interest which are otherwise difficult to optimize using binary cross-entropy loss. This loss is applied
to all the cross-attention layers to modulate the visual features with text tokens.

The overall training objective is the sum of the standard LLM – the causal language modeling
(next-token prediction) loss computed using standard cross-entropy on the entire dataset and Lg–the
loss of distillation calculated on the subset with the SAM grounding masks. The two loss are trained
with equal weights.

3.2.3 Training Stages

Our model training, in Table 1, proceeds through four distinct stages. The first three stages comprise
a comprehensive pre-training phase aimed at effectively aligning visual features with the textual
representations of our lightweight 1B parameter LLM. A primary objective throughout this pre-
training is to instill the LLM with visual capabilities while preserving its inherent language proficiency.

Stage1: Initial Vision-Language Alignment. The first stage establishes a foundational mapping
between modalities by aligning visual features (processed through an adapter) with the LLM’s textual
representations. We achieve this alignment using newly integrated cross-attention layers, with training
guided exclusively by the LLM’s inherent language modeling objective (e.g., next-token prediction).
This provides strong initial weights for the adapter and cross-attention modules, teaching them to map
visual information into the LLM’s embedding space. This methodology, utilizing image-caption pairs
from the Cambrian 2.5M dataset, is analogous to the initial pre-training phase of standard VLMs.

Stage 2: Vision Encoder Adaptation. In the second stage, we unfreeze and fine-tune the final
block of the ConvNeXT vision encoder, training it jointly with the adapter and cross-attention layers.
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Table 2: Quantitative evaluation. Comparison of our AGE-VLM with state-of-the-art efficient
VLMs on vision-centric benchmarks.

Method HallusionBench OCRBench CV-Bench RWQA POPE

aAcc fAcc qAcc Scene Centric Key Info. Extract. 2D 3D

CA-Baseline 40.38 13.87 11.21 148.00 51.00 0.62 0.50 0.47 85.11
ConvLLaVA 24.71 8.96 4.84 117.00 26.00 0.59 0.57 0.51 77.76
mobile-vlm-v2 44.37 14.45 11.65 101.00 2.00 0.31 0.40 0.28 84.30

AGE-VLM 43.85 15.32 11.21 149.00 59.00 0.61 0.52 0.48 87.34
AGE-VLM-LM 39.22 11.56 7.91 126.00 33.00 0.66 0.46 0.51 85.18

This approach is motivated by prior work demonstrating that adapting pre-trained ConvNeXt models
from their original resolution (e.g., 384×384) to higher resolutions (e.g., 768×768) enhances detailed
visual understanding. Operating at this higher resolution, our ConvNeXT yields 576 visual tokens,
comparable to a Vision Transformer (ViT) backbone at a 336×336 resolution. This highlights
ConvNeXT’s greater token efficiency compared to common ViT-based VLMs. The Cambrian 2.5M
dataset continues to provide image-caption pairs for the LLM loss in this stage.

Stage 3: Spatial Grounding via Knowledge Distillation and Alignment. The third stage enhances
visual grounding by incorporating knowledge distillation from the Segment Anything Model (SAM)
to ensure generated responses are explicitly tied to relevant visual information. For approximately
10% of the Cambrian 2.5M image-text pairs, SAM generates segmentation masks for key entities or
concepts relevant to the image-text context. We then optimize our model’s cross-attention weights
to align with these SAM-generated masks using the objective defined in Eq. 3. This encourages the
cross-attention mechanism to focus on pertinent image regions during visual processing, thereby
improving spatial grounding. The LLM loss is computed using the Cambrian 2.5M dataset.

Stage 4: Visually Grounded Instruction Fine-tuning. The final stage consists of end-to-end
instruction fine-tuning for the entire model. We consider two variations for training. In the first
setting, we follow [35] (AGE-VLM) and finetune the model without the attention-grounding loss. The
key advantage of this is that the self-attention layers of the LLM are kept intact, allowing to efficiently
integrate multimodal signal with the model retains its language capacity. In the second scenario
(AGE-VLM-LM) visual grounding is maintained by concurrently applying the distillation loss (from
Stage 3) and the primary LLM loss (next-token prediction for instruction following). For knowledge
distillation, SAM is prompted with the instruction (typically a question) and its ground-truth answer.
This guides SAM to generate segmentation masks for image regions most pertinent to that specific
instruction-answer pair, and our model’s attention is then distilled towards these masks. The LLM
loss in this stage utilizes the full Cambrian 10M instruction-following dataset, while the grounding
loss is applied to a 10% subset thereof, reinforcing the model’s focus on relevant visual evidence.

4 Experiments

To validate the effectiveness of our AGE-VLM in encoding and utilizing visual features to mitigate
object hallucination, following [35] we perform extensive experiments on vision-centric tasks for
objection hallucination evaluation on Visual Question Answering (VQA) with human edited images
on HallusionBench [12] and on the POPE [20] dataset. Additionally,we include OCRBench [25]
for scene-centric text-VQA and for key information extraction from the receipt images. We further
evaluate on CV-Bench and RealWorldQA [40] to uncover multimodal capabilities in 2D tasks, i.e.,
spatial relationships or object count and for 3D tasks such as depth and relative distances.

Training Setup. As discussed in Sec. 3, we perform the four stage training of the model. For
pretraining (stages 1, 2 and 3) we use Cambrian2.5M dataset and perform instruction finetuning (stage
4) with the Cambrian10M dataset. We train our model on 8 Nvidia A100 GPUs with a batchsize of
16 per GPU. We adopt the pretrained LLaMA-1B and the 4-stage constrastively trained ConvNeXt
as the base model for our attention-guided efficient VLM. We train our approach with two variants
AGE-VLM which does not apply attention-guidance loss during finetuning (stage 4). This variant
applies attention grounding only in the pretraining stage. The key advantage of this is that the
self-attention layers are kept intact yielding a efficient way of introducing multimodal capability in
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Table 3: Qualitative comparison of our approach againt Conv-LLaVA and MobileVLM-v2 on
vision-centric task.

Prompt Is there a laptop in the image? Please
answer yes or no.

Is there an apple in the image?
Please answer yes or no.

Is there a cup in the image? Please
answer yes or no.

Groundtruth yes yes yes

Conv-LLaVA [8] 0 0 no

MobileVLM-v2 [39] No, there is no laptop in the image.
The image features a person typing
on a keyboard.

No, there is no apple in the image.
The image features a shelf with vari-
ous items, including books, a teddy
bear, and a Christmas ornament.

No, there is no cup in the image. The
image only shows a plate of food,
including a salad and a bowl of soup.

AGE-VLM Yes, there is a laptop in the image. It
is partially visible in the background,
partially obscured by the hands of the
person typing on the keyboard. The
laptop is positioned to the left side
of the image, and it appears to be a
standard model with a white exterior
and black keys.

Yes, there is an apple in the image.
It is located on the top shelf, to the
left of the teddy bear. The apple is
red with a yellow stem and is placed
among other items.

Yes, there is a cup in the image. It is
located on the right side of the plate,
partially obscured by the bread. The
cup appears to be a clear glass, and
it is filled with a transparent liquid,
which could be water or another clear
beverage.

the text-only LLM. In another scenario AGE-VLM-LM, we also apply guidance loss and train the
model with the stage 4 as outlined in Sec. 3.

Evaluation Metrics. We evaluate our models on diverse benchmarks with each having a different
metric to assess model performance. HallusionBench considers aAcc: the overall accuracy of all
atomic questions, qAcc: the mean accuracy of unique questions as one question can be asked multiple
times with different figures. A VLM correctly solved a unique question only if it succeeds in all
<question, figure> pairs for this unique question. fAcc: the mean accuracy of all figures. One
figure is associated with multiple questions, a VLM iscorrect on a figure only if it succeeds to solve
all questions of this figure. CV-Bench consists of multiple choice questions, the models however,
sometimes do not output the option even though they generate the correct answer. To account for this,
we evaluate the accuracy by employing Qwen-L for evaluation. For OCRBench and RealWorldQA,
we report the accuracy on the Scene-centric and the key information extraction tasks.

Prior-art and Baseline. We compare our approach against ConvLLaVA, MobileVLM-v2 and CA-
baseline. ConvLLaVA also extracts vision features from ConvNeXt which are input to Vicuna-7B.
MobileVLM-v2 with 1.7B parameters is based on CLIP-ViT with their MobileLLaMA, a downsized
version of LLaMA. Both the models concatenate the vision tokens to the language tokens which are
input to their respective LLMs optimized with the LM loss. We also include CA-baseline which has
all the elements of our approach except for spatial distillation which attention guidance. That is in
this variant the cross-attention layers and the self-attention layers are trained using only the LM loss.

Quantitative Results. In Tab. 3 we compare our approach to the prior-art and the baselines on
efficient VLMs on different vision-centric benchmarks. We observe that on challenging datasets
such as CV-bench our model outperforms prior work by a large margin. Similar improvements are
demonstrated on the OCRbench and the RealWorldQA datasets. This highlights the enhanced vision
processing ability of our approach. Furthermore, we note that while our approach on HallusionBench
yields better performance than ConvLLaVA, it is comparable to that of MobileVLM-v2. This can
be attributed to fact that the attention signal from SAM cannot text information in mathematical
charts or figures. Notably, our AGE-VLM variant trained in an efficient manner with self-attention
layers intact (not trained with the grounding loss) consistently outperforms prior art with seamless
integration of visual information with just 1.2B parameters.

Qualitative Results. In Tab. 3 we present the qualitative comparison of our AGE-VLM approach
against Conv-LLaVA and MobileVLM-v2, the prior art on efficient VLMs on vision-centric question
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Table 4: Attention visualization for different models. Our method looks at the right regions based
on the input image and the input text.

Image Conv-LLaVA [8] CA-baseline Ours

How many handrails are in the image?

Considering the relative positions of the river water and the stone in the image provided, where is the river water located with respect to the
stone?

answering task for challenging question and image pairs. Even though Conv-LLaVA answers
incorrectly, it adheres to the instruction, answering with 0 or no. The responses generated by
MobileVLM-v2 are not well grounded in the image as is evident from the explanation that follows
the answer. For example,in column 3, MobileVLM-v2 incorrectly generates “soup” as the item in the
image. In contrast, our approach not only follows the instruction but can also generate the response
grounded in the image information. For a challenging case in column 2, our approach correctly
localizes the location of apple in terms of the spatial relationship with other objects in the image and
provides the correct response. We demonstrate the localization capabilities of our approach in Tab.
4. We visualize the attention weights of the first self-attention layer for Conv-LLaVA and the first
cross-attention layer for the CA-baseline without attention guidance and our approach with attention
guidance. As shown, given the image and the associated prompt, the Conv-LLaVA approach does not
have any implicit grounding in the sefl-attention layer. The CA-baseline does have implicit grounding
capacity but it incorrectly localizes the target visual concepts from the prompt. Our approach, on the
other hand, localizes the correct regions, e.g., handrails in row 1, and the river and stone in row 2.

5 Conclusion

We introduced AGE-VLM, an efficient VLM designed to mitigate object hallucination. Our findings
demonstrate that distilling knowledge from the SAM to guide attention mechanisms significantly
enhances the visual grounding of VLMs. Extensive experiments show AGE-VLM achieves perfor-
mance that is markedly improved or comparable to existing efficient VLMs on various vision-centric
benchmarks. We believe this approach will stimulate further research into efficiently aligning vision
and text modalities within the hidden states of pretrained LLMs with minimal overhead.

Limitations and Broader Impact. While this paper has focused on the training recipe for distilling
knowledge from SAM into vision-language models, our approach does not explore scaling of the
distillation data or consider distilling optical flow or object tracking into the hidden states of VLMs.
While our work addresses hallucination, it is far from perfect and can produce biased or factually
incorrect content. With efficient VLMs as proposed in this work gaining traction, they will be widely
accessable and should therefore be used with caution as their incorrect responses can cause physical
harm such when using self-diagnosis with consulting medical experts.
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Appendix

We provide details on data collection for alignment guidance, additional details for training AGE-
VLM, provide insights on further improvements with respect to the image data processing and include
additional details on the evaluation benchmarks considered in the main paper. We also provide
additional qualitative results.

A Data for Alignment Guidance

We leverage Grounded Segment Anything Model [34] to obtain the masks of the target concepts
to be focused on in the cross-attention layers. For text-based segmetation (referring expression
segmentation) Grounded-SAM combines Florence-2 [41] and SAM [15] to obtain the masks for
the given text. Florence-2 takes a task instruction as input and generates results in the text form.
Specifically for the referring expression segmentation, instruction “Ground the object which is most
related to the text input” is provided. The segmentations are generated as polygons, with location
tokens (x0, y0, . . . , xn, yn) representing the vertices of the polygon in clockwise order. The tokens
and the image are provided to the SAM model to generate the target mask. With this pipeline,
during the pre-training stages (1–3) we generate the target masks for 77K images and their associated
captions in the Cambrian 2.5M dataset. Importantly, during fine-tuning, since the model takes image
and a question prompt as input to generate the answer, we adhere to this framework and generate the
segments based on the question for the given image. This instills in the model the ability to look at the
right regions based on the question about the given image. For this phase, we utilize approximately
1% (150K samples) of the Cambrian10M instruction fine-tuning dataset.

B Implementation Details

For any stage, we use the learning rate of 1e−5 for all the modules including ConvNeXt, the projector,
the cross-attention layers and the language model. We use Adam optimizer with the weight decay of
0.1, the warmup ratio of 0.03, β2 is set to 0.95. Additionally, we train of each stage of a single epoch
consistent with prior work on large vision-language models [8].

C Image Processing and Attention

The input image to ConvNeXt is of size 768 × 768 yielding 576 tokens. We make an important
observation the prior work [8, 24] zero-pad the images to resize them to target resolution. In our
analysis we observe that for prior work without our attention guidance, the attention is focused
on these padded regions. This might be an additional bottleneck for the vision-language models
as they can easily ignore the vision features due to this inconsistency in the data. The impact of
image-preprocessing techniques in large models needs further investigation and is an important
direction for future work.

D Evaluation Benchmarks

We specifically evaluate on vision-centric benchmarks which take into account the visual information
for visual question answering, suitable for detecting hallucination in multimodal setting.

HallusionBench [12]. The benchmark comprises 346 images paired with 1129 questions. The
questions are framed in the yes/no format. The questions also ask about objects which are not present
in the image. This allows for targeted evaluation for our goal of attention guidance to integrate visual
information emphasizing that the model “looks" at the image to perform the task.

OCRBench [25]. It evaluates the ability of VLMs to accurately detect and read text in the images.
In our model evaluation we focus on 475 images for the scene text centric VQA and key information
extraction where images with text such as addresses, receipts, signs etc. are presented to the LMM
and questions about the OCR content are asked.
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CV-Bench [35]. This is a larger vision-centric benchmark containing 2638 manually-inspected
examples. This contains image-question pairs to evaluate 2D (spatial relationships, counting) and 3D
(depth order, relative distances) understanding of the VLM. For this it uses, ADE20k, COCO and
OMNI3D dataset benchmarks.

RealWorldQA [40]. This benchmark consists of 765 images, with a question and easily verifiable
answer for each image. This dataset also contains questions about spatial understanding in images.

POPE [21]. Similar to HallusionBench, POPE is also inspired to evaluate VLMs for object halluci-
nation. This also contains yes/no format of the questions about the absence or presence of objects in
the image.

E Additional Qualitative Examples

In Tab. 5 and 6, we present additional qualitative examples to show the performance of our model
with attention guidance. Our model consistently performs better than Mobile-VLM V2 showing the
advantages of our model in grounding its answers in the visual information. We support our results
by visualzing the attention weights in Tab. 6 where our model is clearly able to look at the relevant
regions for a given question.
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Prompt Is there a cup in the image?
Please answer yes or no.

Is there a chair in the image?
Please answer yes or no.

Is there a person in the im-
age? Please answer yes or
no.

Groundtruth No No No

MobileVLM-v2 Yes, there is a cup in the im-
age.

Yes, there is a chair in the
image.

Yes, there is a person in the
image.

AGE-VLM No, there is no cup in the
image. The image primarily
features fresh produce and
does not include any cups or
containers that could be used
for drinking. The focus is on
the display of fruits and veg-
etables, which are typically
used for consumption rather
than for drinking.

No, there is no chair in the
image. The image is focused
on the pizza and the person’s
hands, with no chairs or fur-
niture visible in the frame.

No, there is no person in the
image. The image solely fea-
tures food items on a plate,
which are the main subjects.
There are no people present
in the frame.

Prompt Is there a bicycle in the im-
age? Please answer yes or
no.

Is there a person in the im-
age? Please answer yes or
no.

Is there a person in the im-
age? Please answer yes or
no.

Groundtruth no no no

MobileVLM-v2 Yes, there is a bicycle in the
image.

Yes, there is a person in the
image.

Yes, there is a person in the
image.

AGE-VLM No, there is no bicycle in the
image. The image is a nat-
ural scene with animals and
vegetation, and it does not
contain any man-made ob-
jects such as a bicycle.

No, there is no person in the
image. The image solely fea-
tures wildlife, specifically gi-
raffes and zebras, in a natu-
ral setting. There are no hu-
man figures or indications of
human presence in the scene.

There is no person visible in
the image.

Prompt Is there a backpack in the im-
age? Please answer yes or
no.

Is there a chair in the image?
Please answer yes or no.

Is there a bowl in the image?
Please answer yes or no.

Groundtruth yes no no

MobileVLM-v2 No, there is no backpack in
the image. The image fea-
tures a black cat standing
next to a bottle of wine.

Yes, there is a chair in the
image.

Yes, there is a bowl in the
image.

AGE-VLM Yes, there is a backpack in
the image. It is hanging on
the wall to the right of the
cat.

No, there is no chair in the
image. The image shows
a table with a pizza and a
drink, and there is no chair
visible in the frame.

No, there is no bowl in the
image. The food is presented
on a plate, which is a shallow
dish typically used for serv-
ing food rather than a bowl.

Table 5: Qualitative comparison of our approach against MobileVLM-v2 on vision-centric task.
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Image Conv-LLaVA CA-baseline Ours

Considering the relative positions of the rocks (annotated by the red box) and the trees in the image provided,
where is the rocks (annotated by the red box) located with respect to the trees?

Considering the relative positions of the river water and the stone in the image provided, where is the river water
located with respect to the stone?

How many windows are in the image?

Table 6: Attention visualization. Our method looks at the right regions given the input image and
the input text.
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